

<u>3rd MEETING ON</u> T-CELL AND NK-CELL BASED <u>IMMUNOTHERAPIES FOR</u> LYMPHOID MALIGNANCIES

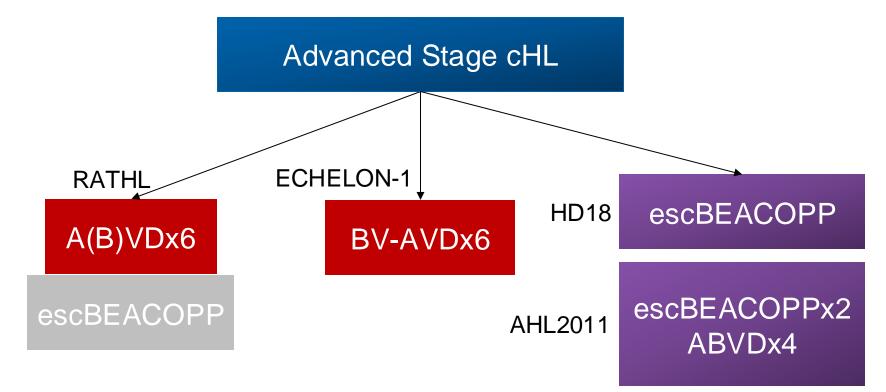
Alex F. Herrera, MD

The Evolving Role of Checkpoint Inhibitors in Front-Line Hodgkin Lymphoma

Division of Lymphoma, Department of Hematology, City of Hope

Disclosures of Name Surname

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Bristol Myers Squibb Genentech Merck Seattle Genetics AstraZeneca ADC Therapeutics	x		x				
KiTE Pharma Gilead Sciences	x						
Takeda Karyopharm Tubulis Regeneron Genmab Pfizer Caribou Biosciences Adicet Bio Abbvie Allogene Therapeutics			X				


Presentation Outline

- Checkpoint inhibitors in advanced stage classic Hodgkin lymphoma (cHL)
- Checkpoint inhibitors in early stage cHL
- Next Questions

Advanced Stage Disease

3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES

Standard Management of Advanced Stage cHL

Ansell SM, et al. NEJM 2022, Borchmann P et al. Lancet 2018, Casasnovas O et al. Lancet Oncol 2019, Johnson P et al. NEJM 2016

3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES

PD-1 blockade in advanced stage cHL safe and effective

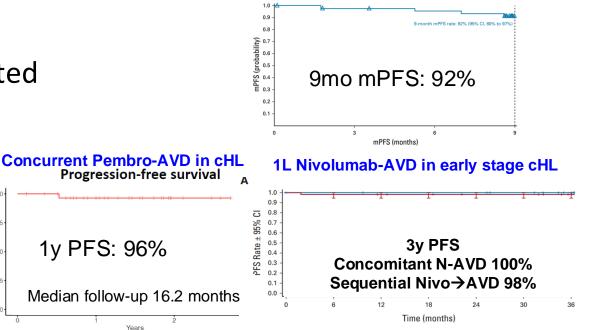
- Studies of frontline PD-1 blockade in cHL have been promising^{10,11,12,13}
 - N-AVD well-tolerated
 - Excellent PFS

1.0

- Free Survival 0.50

Jugord

Sequential Pembro-AVD in cHL


33-mo PFS: 100%

2 4 6 8 10 12 14 16 18

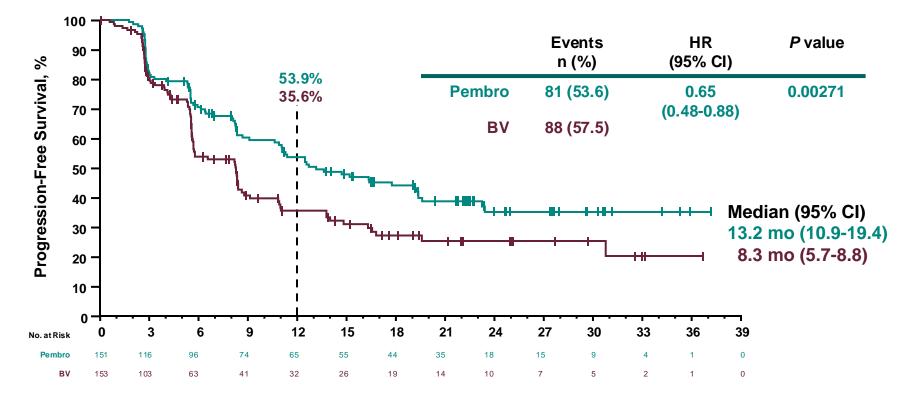
Median follow-up 33.1 months

Months since Registration

1L Nivolumab-AVD in advanced stage cHL

0. Bröckelmann PJ et al JCO. 2023 11. Ramchandren R et al JCO 2019 12. Allen PB, et al Blood. 2021 13. Lynch RC

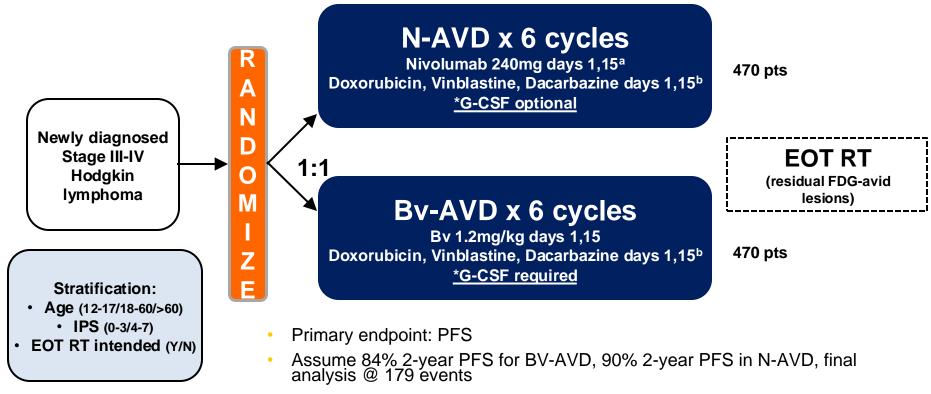
28 30 32 34 36 38 40 42 44


0.7

Probability

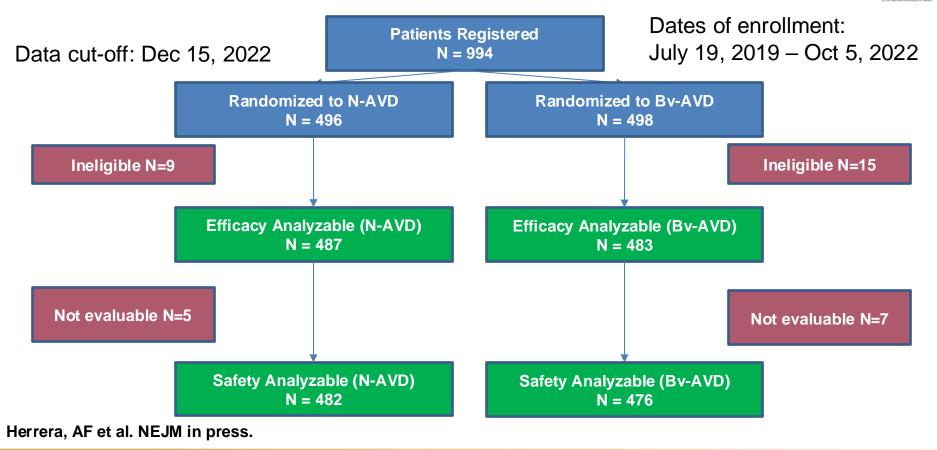
0.25

0.00


PD-1 superior to BV in R/R HL...

Kuruvilla J et al ASCO 2020, Lancet Oncol 2021

S1826 Study Design



Herrera, AF et al. ASCO 2023.

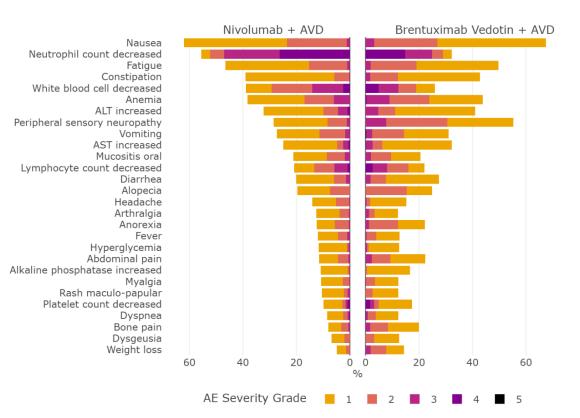
Nivolum ab 3mg/kg for ages ≤ 17, max 240mg
 Conventional doses of AVD: Stephens DM et al Blood 2019, Ansell SM et al NEJM 2022

S1826 CONSORT Diagram

Stational Cancer
 Instance Instances
 Automatic Cancer
 Instances
 In

3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES

NCI National Clinical Trials Network


S1826 Baseline Characteristics

Baseline characteristics	N-AVD n=487 N (%)	Bv-AVD n=483 N (%)	Baseline characteristics	N-AVD n=487 N (%)	Bv-AVD n=483 N (%)
Age, median (range) 12-17 years 18-60 years ≥ 61 years	27 (12-83) 118 (24%) 321 (66%) 48 (10%)	26 (12-81) 118 (24%) 318 (66%) 47 (10%)	Stage III IV B symptoms present	185 (38%) 302 <mark>(62%)</mark> 288 (59%)	168 (35%) 315 <mark>(65%)</mark> 273 (57%)
Female Sex	216 (44%)	210 (43%)	IPS Score		, , , , , , , , , , , , , , , , , , ,
Race White	372 (76%)	361 (75%)	0-3 4-7	332 (68%) 155 (32%)	328 (68%) 155 (32%)
Black	58 (12%)	56 (12%)	Bulky disease > 10cm	156 (32%)	127 (26%)
Asian	11 (2%)	17 (4%)	HIV+	11 (2%)	5 (1%)
Other/Unknown	46 (9%)	49 (10%)			
Hispanic	66 (14%)	58 <mark>(12%)</mark>	Representative study, i	nclusive of h	igh-risk pts

Herrera, AF et al. NEJM in press.

Adverse Events in ≥ 10% patients by Arm

Herrera, AF et al. NEJM in press.

AEs of interest: Hematologic

Toxicity	N-AVD n = 482		Bv-AVD n = 476				
	Any Gr Gr≥3		Any Gr	Gr≥3			
	N (%)	N (%)	N (%)	N (%)			
Neutropenia	272 <mark>(56%)</mark>	232 (48%)	160 <mark>(34%)</mark>	126 (26%)			
Anemia	190 (39%)	29 (6%)	217 (46%)	43 (9%)			
Thrombocytopenia	52 (11%)	9 (2%)	86 (18%)	16 (3%)			
Received G-CSF	Received G-CSF 274 (56%) 467 (97%)						
Bone pain 40 (8%) 96 (20%)							
More neutropenia after N-AVD More growth factor use, bone pain in Bv-AVD arm							

Herrera, AF et al. NEJM in press.

Alex F. Herrera, MD 3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES

AEs of interest: Infectious

Toxicity	N-AVD n = 482	Bv-AVD n = 476
Febrile Neutropenia	28 (6%)	33 (7%)
Sepsis	8 (2%)	16 (3%)
Infections/Infestations (Gr ≥ 3)	22 (5%)	35 (7%)

No increased infectious toxicity in N-AVD arm

Herrera, AF et al. NEJM in press.

AEs of Interest: Peripheral Neuropath

Toxicity	N-AVD		Bv-AVD	
	<u>n =</u>	482	n = 476	
	Any Gr N (%)	Gr ≥ 3 N (%)	Any Gr N (%)	Gr≥3 N (%)
Peripheral sensory	139 <mark>(29%)</mark>	5 <mark>(1%)</mark>	266 <mark>(56%)</mark>	39 <mark>(8%)</mark>
neuropathy				
Peripheral motor	20 (4%)	1 (0%)	35 (7%)	6 (1%)
neuropathy				

More neuropathy in Bv-AVD arm

Herrera, AF et al. NEJM in press.

AEs of Interest: Peripheral Neuropathy

Toxicity	N-AVD		Bv-AVD			
		n = 482			n = 476	
	Gr 1 (%)	Gr 2 (%)	Gr ≥ 3 N (%)	Gr 1 (%)	Gr 2 (%)	Gr ≥ 3 N (%)
Peripheral sensory neuropathy	98 (20%)	36 (7%)	5 (1%)	115 (24%)	112 <mark>(24%)</mark>	39 <mark>(8%)</mark>
Peripheral motor neuropathy	13 (3%)	7 (1%)	1 (0%)	12 (3%)	17 (4%)	6 (1%)

Higher grade neuropathy in Bv-AVD arm

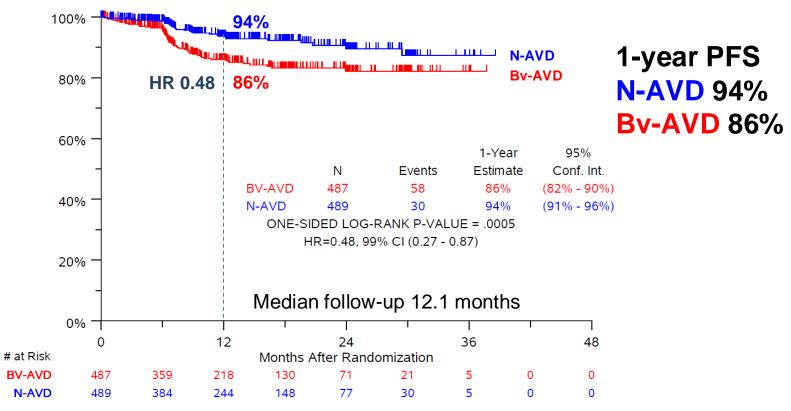
Herrera, AF et al. NEJM in press.

AEs of Interest: Immune/Other

	N-AVD n = 482		Bv-AVD n = 476	
Toxicity	Any Grade No (%)	Grade ≥ 3 No (%)	Any Grade No (%)	Grade ≥ 3 No (%)
ALT increased	160 (33%)	22 (5%)	201 (42%)	23 (5%)
AST increased	125 (26%)	12 (2%)	160 (34%)	14 (3%)
Rash maculo-papular	54 (11%)	4 (1%)	58 (12%)	0 (0)
Hypothyroidism	35 (7%)	1 (0%)	3 (1%)	0 (0)
Rash acneiform	17 (4%)	0 (0)	12 (3%)	0 (0)
Pneumonitis	11 (2%)	3 (1%)	15 (3%)	10 (2%)
Gastritis	9 (2%)	3 (1%)	8 (2%)	0 (0)
Hyperthyroidism	13 (3%)	0 (0)	0 (0)	0 (0)
Colitis	6 (1%)	1 (0%)	6 (1%)	4 (1%)

Low rates of immune-related adverse events

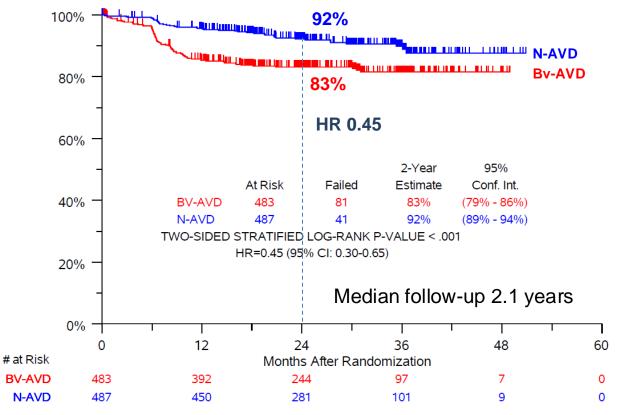
Herrera, AF et al. NEJM in press.


Treatment Discontinuation and Deaths

Disposition	N-AVD (n=487) N (%)	Bv-AVD (n=483) N (%)
Completed treatment	450 (92.4%)	425 (88%)
Discontinued all treatment early Adverse event Refusal unrelated to AE Progression/relapse Death on treatment Other – not protocol specified	37 (7.6%) 20 (4.1%) 9 0 (0%) 3 (0.6%) 5	58 (12%) 20 (4.1%) 13 9 (1.9%) 8 (1.7%) 8
Any discontinuation Bv or Nivolumab	46 (9.4%)	107 (22.2%)
Received radiotherapy	3 (0.6%)	4 (0.8%)

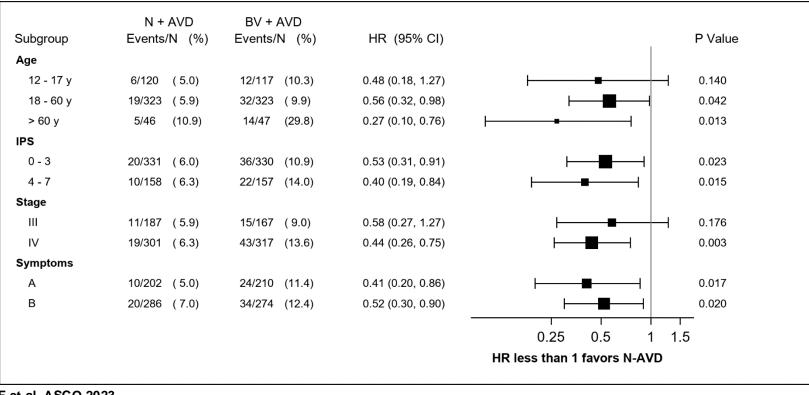
Herrera, AF et al. NEJM in press.

N-AVD improves PFS compared to Bv-AVD


Herrera, AF et al. ASCO 2023.

3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES

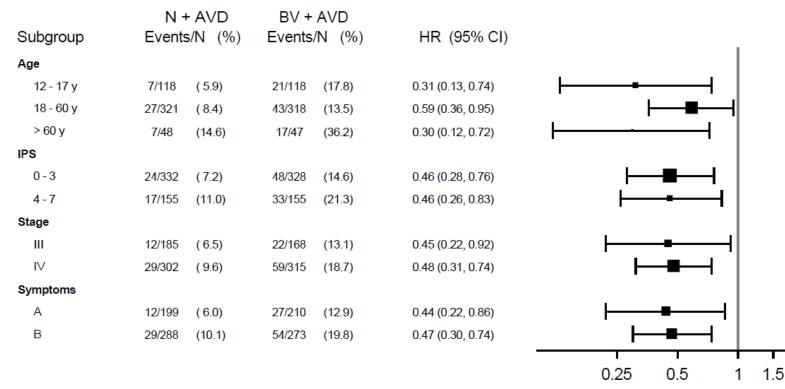
CANCER RESEARCH


NCI

2-year PFS N-AVD 92% Bv-AVD 83%

Herrera, AF et al. NEJM in press.

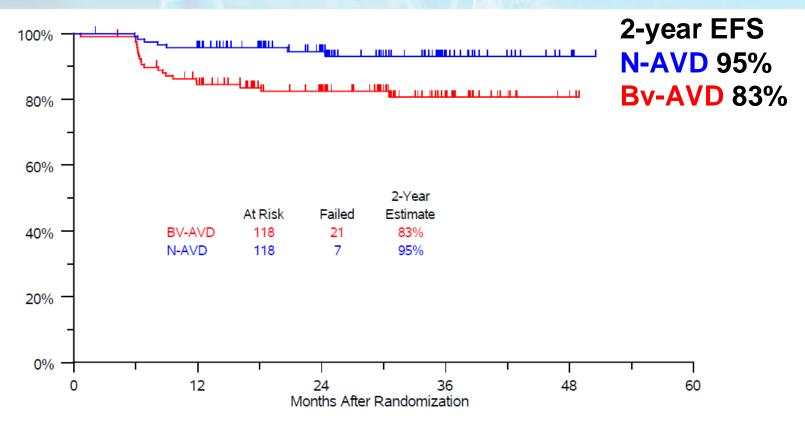
Herrera, AF et al. ASCO 2023.


3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES

SWOG

CANCER RESEARCH

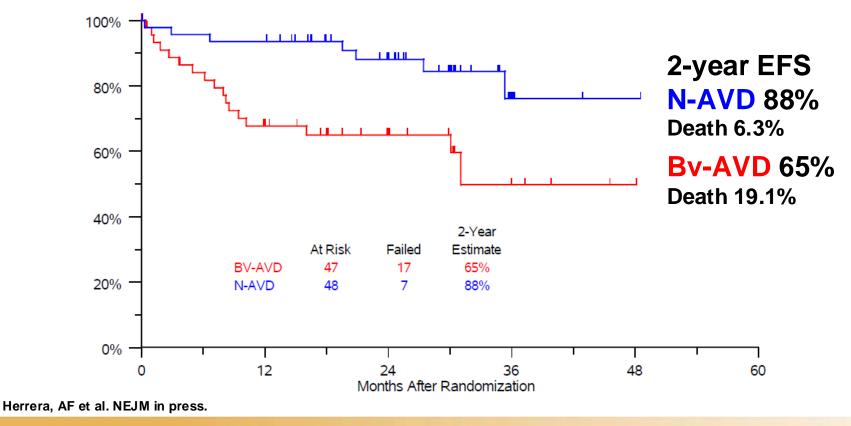
PFS benefit consistent across subgroups (2y)



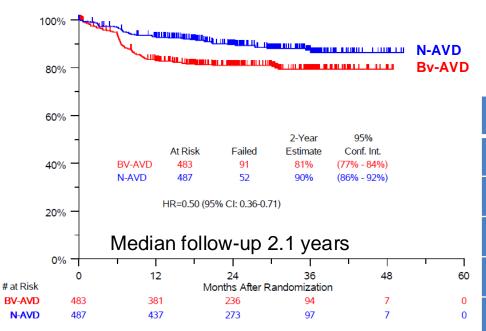
HR less than 1 favors N-AVD

Herrera, AF et al. NEJM in press.

3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES


N-AVD > BV-AVD in pediatric patients

Herrera, AF et al. NEJM in press.

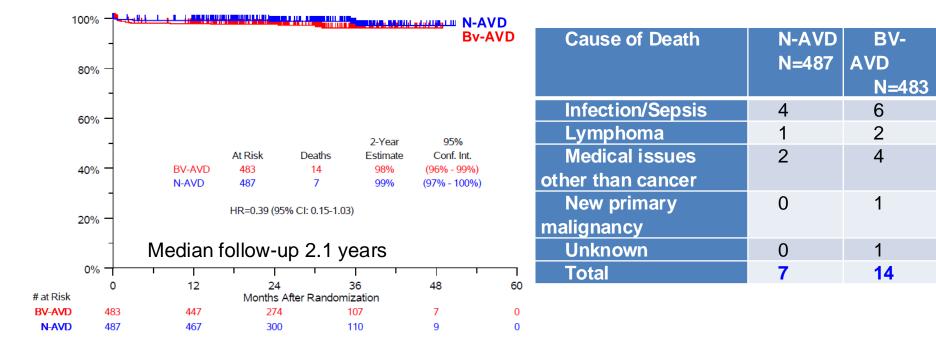

N-AVD >> BV-AVD in older patients (61+yo)

23

24

Event-Free Survival

2-year EFS N-AVD 90% Bv-AVD 81%


EFS events: death, progression, non-protocol treatment before progression

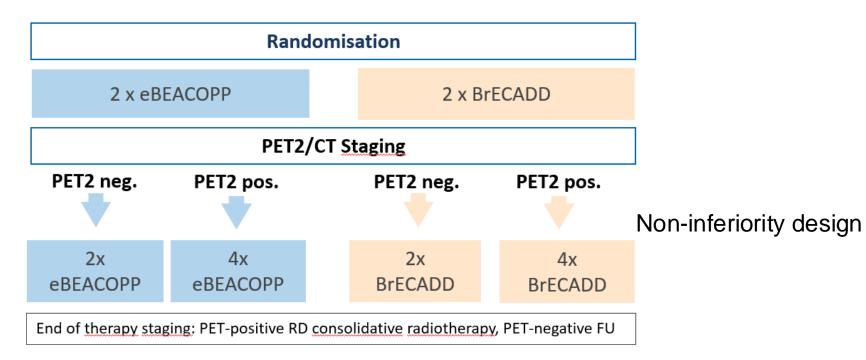
Type of EFS Event	N-AVD N=487	BV-AVD N=483
Non-protocol chemo prior to PD	10 (2.1%)	7 (1.4%)
Non-protocol RT prior to PD	3 (0.6%)	5 (1.0%)
Progression/Relapse	32 (6.6%)	67 (13.9%)
Death without progression	7 (1.4%)	12 (2.5%)
Total EFS events	52 (10.7%)	91 (18.8%)

Herrera, AF et al. NEJM in press.

Overall Survival

Herrera, AF et al. NEJM in press.

3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES


S1826 Conclusions

- N-AVD improved PFS compared to Bv-AVD in advanced stage cHL
 - N-AVD improved EFS versus Bv-AVD
- N-AVD was well-tolerated
 - Few immune-related adverse events
- < 1% of patients received consolidative RT
 - May reduce late effects
- Follow-up ongoing to assess long-term safety, OS, and PROs
- Key step towards harmonizing pediatric and adult therapy of cHL
- N-AVD is a new standard therapy for advanced stage cHL

HD21: Reducing toxicity of escBEACOPP

• Advanced stage cHL < 60y

Borchmann P et al, ICML 2023

HD21: Reducing toxicity of escBEACOPP

Drug	Day	BEACOPP ¹ Dose (mg/m ²)	BrECADD Dose (mg/m²)	Potential improvement
Bleomycin	8	10	-	lung tox
Etoposide	1–3	200	150	hem tox, transfusion frequency
Doxorubicin	1	35	40	
Cyclophosphamide	1	1250	1250	
Vincristine	8	1.4	-	neuropathy
Brentuximab vedotin	1	-	1.8 mg/kg	
Procarbazine	1-7	100	-	gonadal tox, sAML/MDS
Prednisone	1-14	40	-	weight, bone, infections
Dacarbazine	2–3	-	250	
Dexamethasone	1-4	-	40	

Borchmann et al, Abstract #T002 ISHL 2022

GHSG HD21 clinical implications of observed differences

Toxicity	eBEACOPP (%)	BrECADD (%)
Anemia (at least 1 red cell transfusion)	22	8
Thrombocytopenia (at least 1 platelet transfusion)	13	6
	eBEACOPP (%)	BrECADD (%)
Sensory PNP		
All grades	49	38
Grade 2	14	6
Grade 3	eBEACOPP	BrECADD
	(%)	(%)
Treatment related mortality	< 1%	0%

3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES

Borchmann et al, Abstract #T002 ISHL 2022 BOLOGNA, ROYAL HOTEL CARLTON September 13-14, 2024

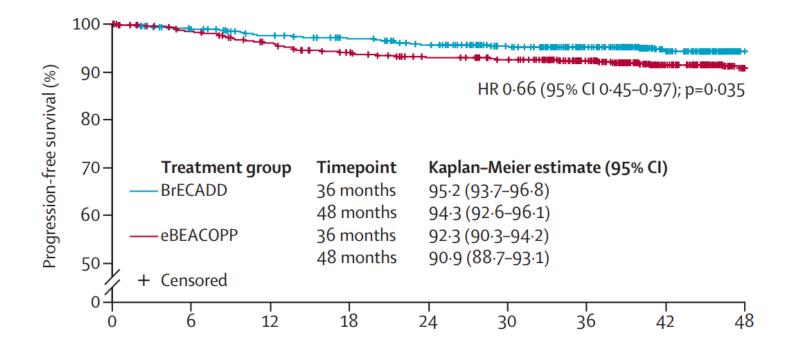
Gonadal dysfunction? FSH (U/I) in HD21

female patients (18-39) per arm

		COPP 326)	_	ADD 331)
	Ν	Mean	Ν	Mean
N (min FU12 m)	145	27,2 ∪/l	149	13,4 U/I

- FSH normal values (cycle dependent): 1,7 – 21,5 U/I
- FSH documented in:

58 % in BEACOPP and 57 % in BrECADD


Borchmann et al, Abstract #T002 ISHL 2022

male patients (18-49) per arm

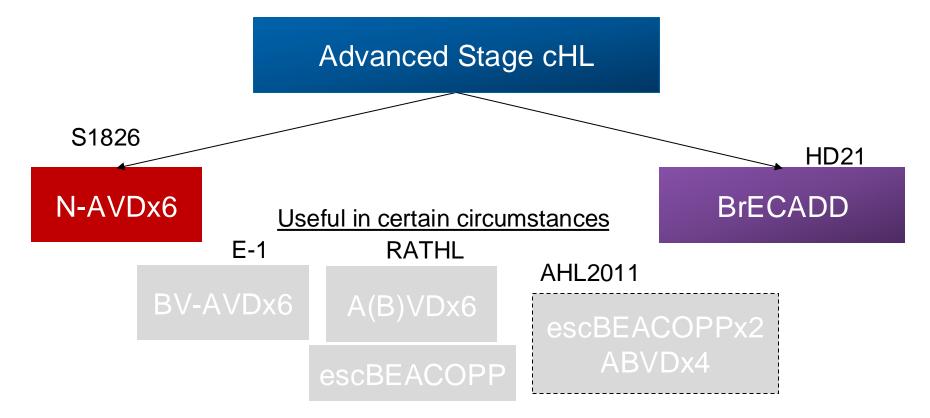
	BEACOPP (N=418)		BrECADD (N=417)	
	Ζ	Mean	Ν	Mean
N (min FU12 m)	189	20,5 U/I	178	11,9 ∪/I

- FSH normal values:
 - FSH: 1.5 12.4 U/I
- FSH was documented in:
 45 % in BEACOPP and 45 % in BrECADD

HD21: BrECADD >> escBEACOPP

Borchmann P et al, Lancet 2024

3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES

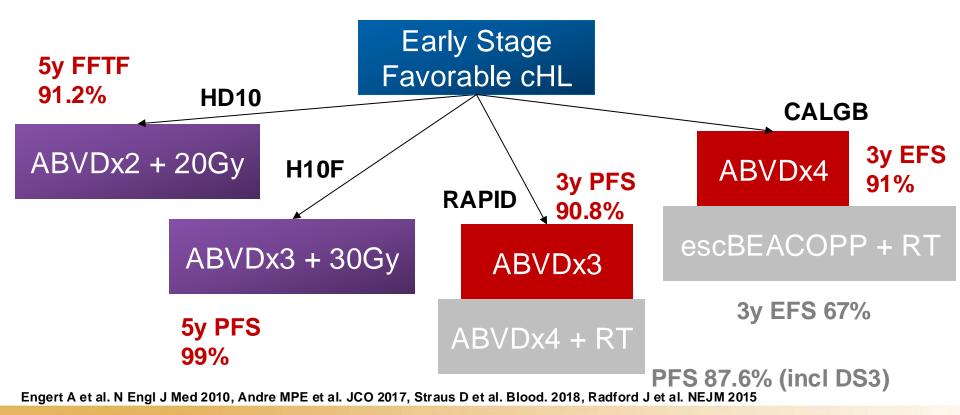

- 91% White
- Ages 18-60 only
- HIV+ excluded
- Stage IIB (+ extranodal and/or bulky), III, IV
 Stage IV = 45% (vs 63% in S1826)
- IPS 4-7 = 21% (vs 32% in S1826)

Tolerability of BrECADD

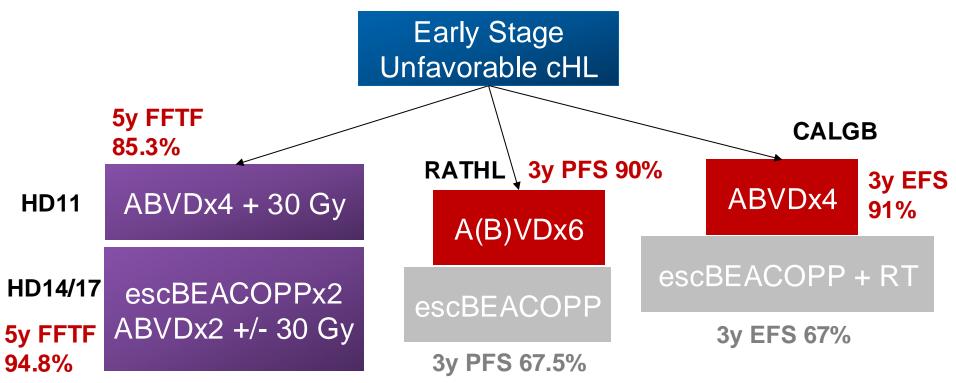
Toxicity	Frequency (%)
Gr ≥ 3 anemia	30% (vs 6%)
PRBC transfusion	24%
Gr ≥ 3 thrombocytopenia	55% (vs 2%)
Platelet transfusion	17%
Gr ≥ 3 leukopenia	87% (vs 47%)
Febrile neutropenia	28% (vs 5%)
Gr ≥ 3 infection	20% (vs 5%)

Use of consolidative radiation: BrECADD 14% vs S1826 < 1%</p>

Current Management of Advanced Stage cHL


Herrera AF, et al. ASCO 2022. Borchmann P, et al. ICML 2022. Ansell SM, et al. NEJM 2022, Borchmann P et al. Lancet 2018, Casasnovas O et al. Lancet Oncol 2019, Johnson P et al. NEJM 2016

3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES


Early Stage Disease

3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES

Standard Management of Early Stage cHL

Standard Management of Early Stage cHL

Eich HT et al. JCO 2011, von Tresckow B et al. JCO 2012, Straus D et al. Blood. 2018, Johnson P et al. NEJM 2016

3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES

PD-1 blockade in early stage cHL safe and effective

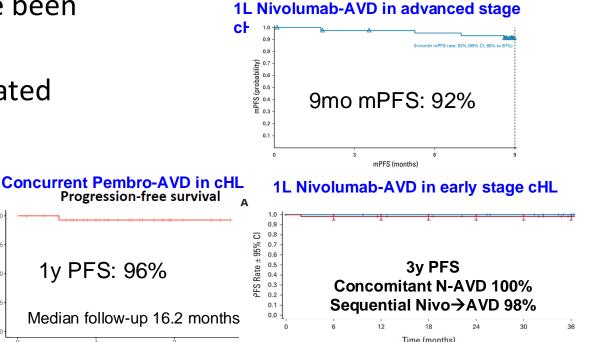
Years

- Studies of frontline PD-1 blockade in cHL have been promising^{10,11,12,13}
 - N-AVD well-tolerated
 - Excellent PFS

Sequential Pembro-AVD in cHL

33-mo PFS: 100%

2 4 6 8 10 12 14 16 18 20


Median follow-up 33.1 months

Months since Registration

1.00

- Free Survival 0.50

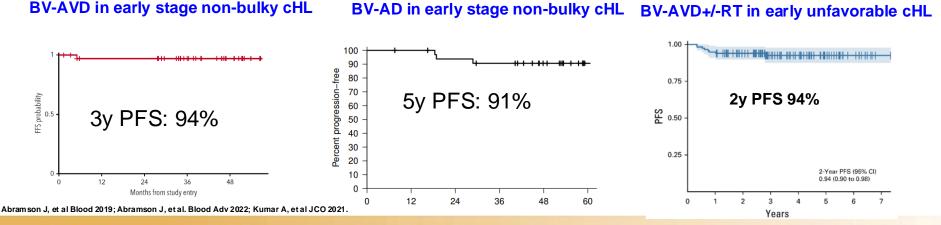
Jugord

). Bröckelmann PJ et al JCO. 2023 11. Ramchandren R et al JCO 2019 12. Allen PB, et al Blood. 2021 13. Lynch RC et al Blood 2023

3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES

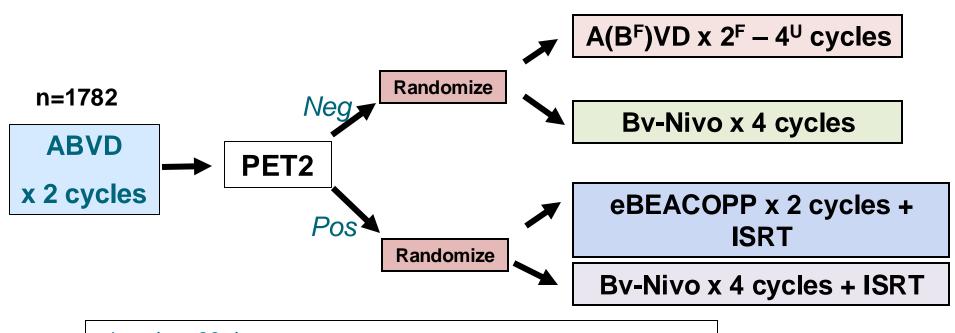
26 28 30 32 34 36 38 40 42 44

0.75


Probability

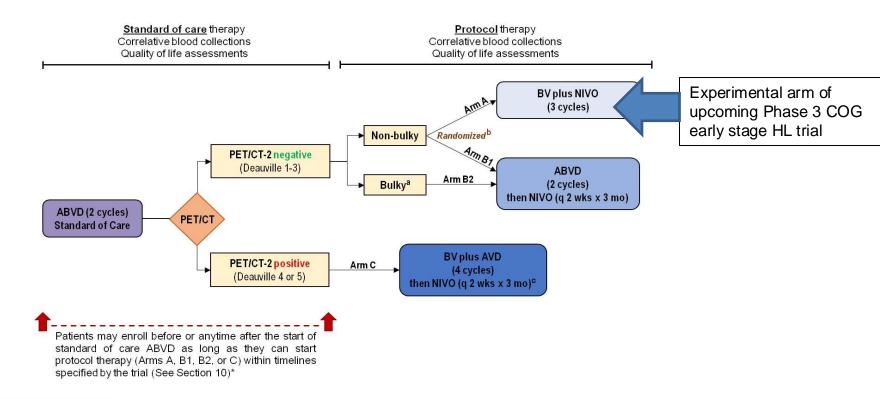
0.25

0.00


BV in early stage is safe and effective

- Studies of frontline BV in cHL have been promising
 - Well-tolerated
 - Excellent PFS

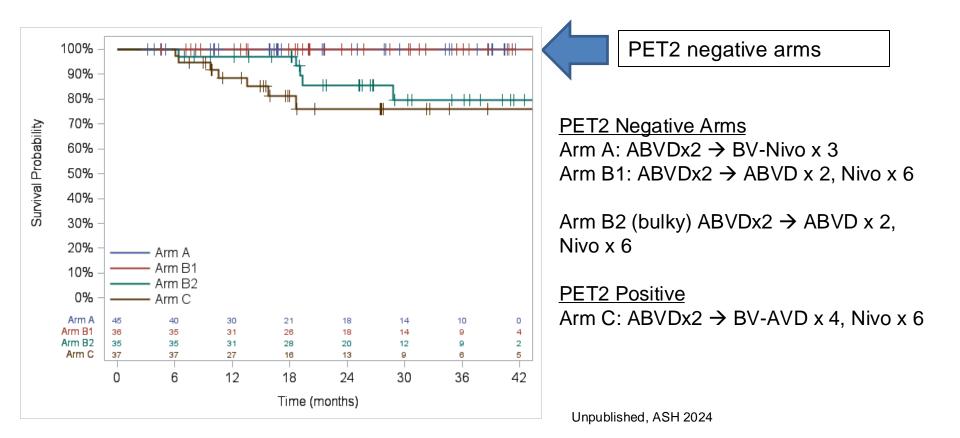
3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES


AHOD2131: PET-adapted BV-Nivo in early stage cHL

a 1 cycle = 28 days
b PET2 positive defined as Deauville 4 or 5

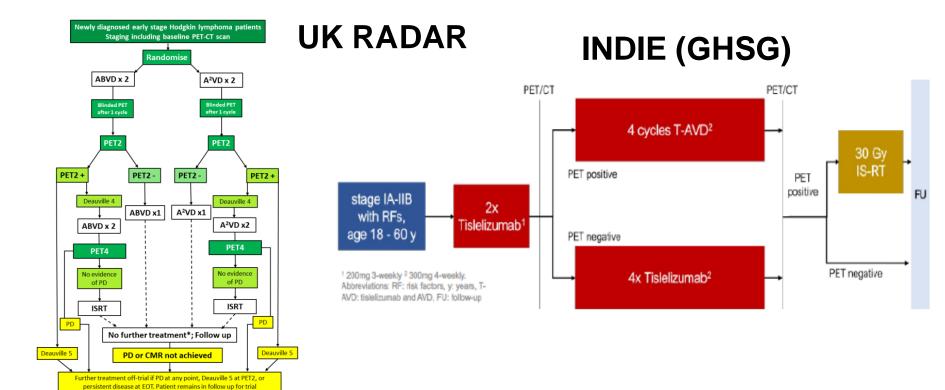
3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES

41 COH IIT 18157: A Phase 2 Study of PET-Adapted Incorporation of BV and Nivolumab into Radiation-Free Frontline Management of Early Stage HL

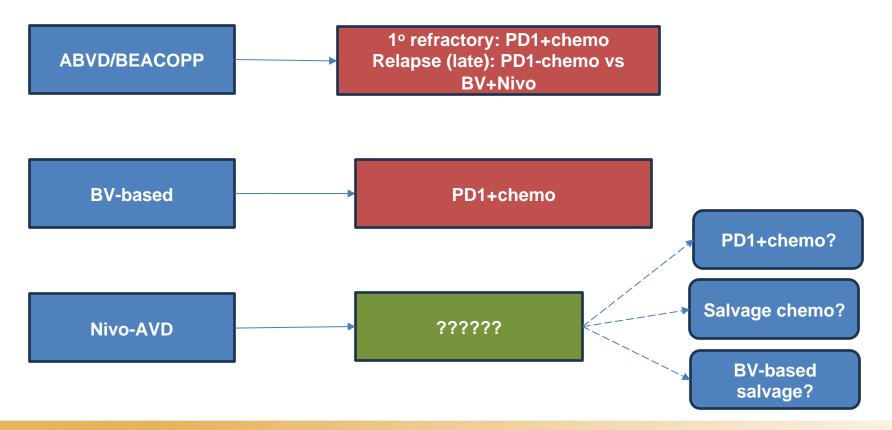


Baseline Characteristics

Baseline Characteristics	N=153
Age (median/range)	31 (18-73)
Male	78 (51%)
Hispanic	
Yes	19 (12%)
Νο	126 (82%)
Not disclosed/Unknown	8 (5%)
Race	
White	117 (77%)
Asian	10 (7%)
Black	8 (5%)
Pacific Islander	2 (1%)
More than 1 race	2 (1%)
Undisclosed/Unknown	14 (9%)
Histology	
HL, NOS	59 (39%)
Lymphocyte rich or	3 (2%)
lymphocytic predominant	
Mixed cellularity	8 (5%)
Modular Sclerosis	83 (54%)
EBV	
Negative	63 (41%)
Positive	22 (14%)
Unknown	68 (44%)


Baseline Characteristics	N=153
Extra-nodal disease	
Yes	22 (14%)
Νο	125 (82%)
Unknown	6 (4%)
B symptoms	
Yes	48 (31%)
Νο	97 (63%)
Unknown	8 (5%)
Stage	
Stage I	17 (11%)
Stage II	134 (88%)
Missing	2 (1%)
GHSG criteria	
Favorable	54 (35%)
Unfavorable	91 (59%)
Missing	8 (5%)
Largest tumor size	
<5cm	72 (47%)
5 cm+	79 (52%)
< 10 cm	127 (83%)
10 cm+	24 (16%)
Missing	2 (1%)

Incorporating Nivo +/- BV in PET2-negative early stage cHL highly effective



43

Ongoing studies in early cHL

3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES

3rd MEETING ON T-CELL AND NK-CELL BASED IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES

45

Conclusions

- Moving PD-1 blockade into earlier lines of cHL treatment has been promising and established a new paradigm of immunotherapy-based treatment of cHL
- Nivo-AVD improved PFS over BV-AVD
- Nivo-AVD better tolerated than BV-AVD
- Future questions
 - Nivo-AVD vs BrECADD?
 - How to salvage frontline anti-PD-1 relapses?